Lecture 03:
Propositional Logic

Logistics: Lecture Participation

Lecture Participation

» Starting Wednesday, we will be using the website PollEV
to ask questions in lecture for attendance credit.

 If you answer these questions in lecture, you’ll get
attendance credit for the day.

* You don’t need to have the right answers - you just need to
respond to the questions.

 CGOE students: We automatically opt you out of
participation, since we assume you aren’t physically here.

 If you'’d prefer not to attend lectures, that’s okay! You can
opt to count your final exam in place of participation.

« We’ll send out a form where you can opt-out of participation in

Week 4.
Do not miss this deadline!

Lecture Participation

 We’ll dry-run PollEV questions today.

* Let’s start with the following warm-up:

Make a music recommendation!

Answer at
htips://cs103.stanford.edu/pollev

e Here are a few music recs of our own:

 Jami Sieber - Timeless.
 Aaron Parks - Little Big and Little Big II.
 Arthur Moon - NPR Music Tiny Desk Concert.

L 4

Click “Register”
and enter your
Stanford e-mail to
get to the SUNet
login page.

pollev.com/cs103aut25

Also:

« Shakey Graves - Roll the Bones (check out Audiotree Live version).

https://cs103.stanford.edu/pollev

Propositional Logic

Question: How do we formalize the
definitions and reasoning we use in our
proois?

Where We're Going

 Propositional Logic (Today)
» Reasoning about Boolean values.
» First-Order Logic (Wednesday/Friday)

 Reasoning about properties of multiple
objects.

Outline for Today

 Propositional Variables

 Booleans, math edition!
 Propositional Connectives

« Linking things together.
 Truth Tables

« Rigorously defining connectives.
 Simplifying Negations

« Mechanically computing negations.

Propositional Logic

TakeMath51 v TakeCME100
—FirstSucceed — TryAgain

IsCardinal N IsWhite

TakeMath51 v TakeCME100
- FirstSucceed — TryAgain

IsCardinal N IsWhite

TakeMath51 v TakeCME100
FirstSucceed — TryAgain

IsCardinal » IsWhite

These are propositional
variables. Each propositional
variable stands for a
proposition, something that is
either true or false.

TakeMath51 v TakeCME100
—FirstSucceed — TryAgain

IsCardinal N IsWhite

These are propositional
connectives, which link
propositions into larger
propositions

Propositional Variables

* In propositional logic, individual
propositions are represented by
propositional variables.

« FEach variable can take one one of two
values: true or false. You can think of
them as bool values.

Propositional Connectives

There are seven propositional connectives, five
of which will be familiar from programming.

First, there’s the logical “NOT” operation:

—pP
You’'d read this out loud as “not p.”

The fancy name for this operation is logical
negation.

Truth Tables

* A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

* Let’s examine the truth tables for the
connectives we're exploring today!

“I don’t love cupcakes.”

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

—LoveCupcakes

Propositional Variables

* In propositional logic, individual propositions
are represented by propositional variables.

e Each variable can take one one of two values:
true or false. You can think of them as bool
values.

* In a move that contravenes programming style
conventions, propositional variables are usually
represented as lower-case letters, such as p, q,
r, s, etc.

« That said, there’s nothing stopping you from using
multiletter names!

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

—LoveCupcakes

“I don’t love cupcakes.”

c : I love cupcakes.

—LoveCupcakes

“I don’t love cupcakes.”

c : I love cupcakes.

Propositional Connectives

There are seven propositional connectives, five
of which will be familiar from programming.

Next, there’s the logical "AND” operation:

P Aq
You’'d read this out loud as “p and q.”

The fancy name for this operation is logical
conjunction.

“Tt’s cardinal and white.”

“Tt’s cardinal and white.”

IsCardinal : It's cardinal.

“Tt’s cardinal and white.”

IsCardinal : 1t’s cardinal.
IsWhite : 1t’s white.

“Tt’s cardinal and white.”

IsCardinal : 1t’s cardinal.
IsWhite : 1t’s white.

IsCardinal N IsWhite

“Tt’s cardinal and white.”

p : It’s cardinal.

q : It’s white.

IsCardinal N IsWhite

“Tt’s cardinal and white.”

p : It’s cardinal.

q : It’s white.

PAq

Propositional Connectives

There are seven propositional connectives, five
of which will be familiar from programming.

Then, there’s the logical “OR” operation:

pVvVq
You’'d read this out loud as “p or q.”

The fancy name for this operation is logical
disjunction. This is an inclusive or.

“You must take Math 51 or CME 100.”

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

TakeMath51 v TakeCME100

“You must take Math 51 or CME

100.”

TakeMath51 : You must take Math 51.

TakeCME100 : You must take CM]|

= 100.

TakeMath51 v TakeCME100

These are propositional
variables. Each propositional
variable stands for a
proposition, something that is
either true or false.

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

TakeMath51 v TakeCME100

This is a propositional
connective, which links
propositions into larger
propositions

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

TakeMath51 v TakeCME100

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

TakeMath51 v TakeCME100

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

pPVq

Propositional Connectives

There are seven propositional connectives, five
of which will be familiar from programming.

There’s also the “truth” connective:

T

You’'d read this out loud as “true.”

Although this is technically considered a
connective, it “connects” zero things and
behaves like a variable that’s always true.

Propositional Connectives

There are seven propositional connectives, five
of which will be familiar from programming.

Finally, there’s the “false” connective.

1

You'd read this out loud as “false.”

Like T, this is technically a connective, but
acts like a variable that’s always false.

Inclusive and Exclusive OR

* The v connective is an inclusive “or.” It's true if at
least one of the operands is true.

e It’s similar to the || operator in C, C++, Java, etc. and
the or operator in Python.

e Sometimes we need an exclusive “or,” which isn’t
true if both inputs are true.

 We can build this out of what we already have.

Write a propositional logic
formula for the exclusive OR
of p and q.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Quick Question:

What would I have to show you to convince
you that the statement p A q is false?

Quick Question:

What would I have to show you to convince
you that the statement p v q is false?

de Morgan’s Laws

—.(p A q) is equivalent to —p V —(

—.(p V q) is equivalent to —p A —(

de Morgan’s Laws in Code

* Pro tip: Don't write this:

if (1(p() && q())) {
[* .. */
}
 Write this instead:

if (tp(O) |1 ta()) {
[* .. */
¥

* (This even short-circuits correctly: if p()
returns false, gq() is never evaluated.)

Mathematical Implication

Implication

 We can represent implications using this
connective:

P~—(q
* You’'d read this out loud as “p implies g.”

* The fancy name for this is the material
conditional.

* Question: What should the truth table for
p — q look like?

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The pig
does the
thing.

Sean throws

qookies.

Contract
upheld?

v

D

v

q

P—dq

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the
thing.

Sean throws

qookies.

Contract
upheld?

D

v

q

P—dq

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

Sean throws

. ookies. Contract
The pig 1 upheld?
does the ‘
thing. 3

v v
P 4d P—(q
F T

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

Sean throws

. ookies. Contract
The pig 1 upheld?
does the
thing.

— Q4

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the
thing.

Sean throws
gookies. Contract

upheld?

D

— T H T 4

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

— - T T
—] — T Q

w4

An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.

Important observation:
The statement p — q is true
whenever p A —q is false.

T
— 1 — T Q

—

An implication with a An implication with a
false antecedent is true consequent is called
called vacuously true.

trivially true.

Please commit this table
to memory. We're going to
need it, extensively, over
the next couple of weeks.

“If at first you don’t succeed, try again.”

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.

-~ FirstSucceed - TryAgain

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.

-~ FirstSucceed - TryAgain

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.

-P—q

Yo !

™™

R AT
7 R

555555555

o W' A
= 7 IR T

JerseyMikes : It's Jersey Mike’s.

JerseyMikes : It's Jersey Mike’s.
FreshlySliced : 1t’s freshly sliced.

™™

555555555

TR AR
&l
T i
:
']

JerseyMikes : It's Jersey Mike’s.
FreshlySliced : 1t’s freshly sliced.

—FreshlySliced - —JerseyMikes

555555555

T T 1
— 2 T o T

JerseyMikes : It's Jersey Mike’s.
FreshlySliced : 1t’s freshly sliced.

—FreshlySliced - —JerseyMikes
JerseyMikes — FreshlySliced

An Important Equivalence

* The truth table for for p — g is chosen so
that the following is true:

p - q isequivalentto —(p A —q)

* Later on, this equivalence will be
incredibly useful:

=(p = q) isequivalentto p A —q

Side Note: Contrapositive

We can use truth tables to demonstrate the
equivalence of p - g and —q —» —p.

P 4 pP—~4q —p —q
FF T T T
FT T T F
T F F F T
T T T F F

Side Note: Contrapositive

We can use truth tables to demonstrate the
equivalence of p - g and —q —» —p.

P— 4 —(q
T
F
T

F

_Iq—)—lp

— = T T
—] < T Q

|—>'%'T.I'%'%

|
T HHg

Lﬁ"ﬂﬁﬁ

same :)

The Biconditional Connective

The Biconditional Connective

* In our previous lecture, we saw that the
statement “p if and only if ¢” means both that
p— qand q - p.

 We can write this in propositional logic using
the biconditional connective:

P <q
 This connective’s truth table has the same
meaning as “p implies q and g implies p.”

 Based on that, what should its truth table look
like?

peq

— =] T
—] — T Q

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Biconditionals

 The biconditional connective p < g has
the same truth table as (p — gq) A (g = p).

e Here’s what that looks like:

P 4 P<(q
FF T
FT F
T F F
T T T

Biconditionals

 The biconditional connective p < g has
the same truth table as (p — gq) A (g = p).

e Here’s what that looks like:

D

One inferpretation ot ©

—
T is To think ot it as
F \ equalify: the two
F
T

propositions must have
equal Truth values,

— —] T
—] — T Q

Negating a Biconditional

« How do we simplify
~(p < q)
using the tools we’ve seen so far?

 There are many options, but here are our
two favorites:

pe—q —peq

Question to ponder: what is
the fruth fable for these
statements, and where have
you seen it betore?

Operator Precedence

« How do we parse this statement?
X ->yYVZoXVYAZ
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
X ->yYVZoXVYAZ
* Operator precedence for propositional logic:

=

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
("X) 2 yVZoXVYAZ
* Operator precedence for propositional logic:

=

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
("X) 2 yVZoXVYAZ
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
(7x) > yvz-oXxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
(7x) > yvz-oXxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
(7x) > (yVvz)—>(KxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
(7x) > (yVvz)—>(KxV(yA2)
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?

(=x) = ((yvz)=KxV(yA2))
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?

(=x) = ((yvz)=KxV(yA2))
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

 The main points to remember:

* = binds to whatever immediately follows it.
* A and Vv bind more tightly than -.

 We will commonly write expressions like
p A g — r without adding parentheses.

 For more complex expressions, we'll try to
add parentheses.

e Confused? Please ask!

The Big Table

Connective |Read Aloud As| C++ Version | Fancy Name Negation
—p “not” ! Negation p
A “and” && Conjunction PV 4
pAq J D - —q
pVvq “or” | | Disjunction -p AN @
T “true” true Truth 1L
L “false” false Falsity T
p-q “implies” see PS2! Implication pA—q
‘“: Way7) . el . p g ﬂq
p e q if and only if see PS2! Biconditional

Time-Out for Announcements!

Submitting Work

« All assignments should be submitted through GradeScope.

 The programming portion of the assignment is submitted separately
from the written component.

 The written component must be typed; handwritten solutions don’t
scan well and get mangled in GradeScope.

» All assignments are due at 1:00PM. You have three “late days”
you can use throughout the quarter. Each automagically extends

assignment deadlines from Friday at 1:00PM to Saturday at
1:00PM; at most one late day can be used per assignment.

* Very good idea: Leave at least two hours buffer time for your first
assignment submission, just in case something goes wrong.

* Very bad idea: Wait until the last minute to submit.

* Your score on the problem sets is the square root of your raw
score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This

gives a huge boost even if you need to turn something in that
isn’t done.

Office Hours

« Office hours have started (as of today)! Think of them as
“drop-in help hours” where you can ask questions on
problem sets, lecture topics, etc.

e Check the Guide to Office Hours on the course website for the
schedule.

« TA office hours are held in person in the CoDa basement
(“garden level”). Keith’s are in CoDa E114. Sean’s are in
CoDa E112 (or possibly outside and upstairs from Bishop
Auditorium).

* Once you arrive, sign up through the CS Office Hours Queue
so that we can help people in the order they arrived:

e Office hours are much less crowded earlier in the week than
later. Stop by on Monday and Tuesday!

https://queue.cs.stanford.edu/

Back to CS103!

Recap So Far

* A propositional variable is a variable that is
either true or false.

 The propositional connectives are
 Negation: —p
 Conjunction: p A g
* Disjunction: p vV g
e Truth: T
« Falsity: L
 Implication: p = ¢
* Biconditional: p < ¢g

Why All This Matters

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X+y=10-x=38vy=8

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

XxX+y=160->x=38vy=8

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“(x=8vy=8)—--(x+y=106)

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

- (x=8vy=8)—--(x+y=10)

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“(x=8vy=8)—--(x+y=10)

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“(x=8vy=8)—-x+y#16

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“(x=8vy=8)-x+y=#16

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“x=8Vvy=8)-x+y#16

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“Xx=8) A (y=8)-x+y=#106

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“Xx=8)A-(y=8)-x+y=#10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

“(x=8)A-(y=8)-x+y=#10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AN-(y=8)—-x+y=#16

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AN-(y=8)—-x+y=#16

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AN—-(y=8)-x+y=#10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AyYy<8-x+y=10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AYy<8-x+y=10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"
X<8AYy<8-x+y=10

“If x<8andy< §,thenx + y = 16"

Theorem: If x + y =16, then x = 8 or y = 8.

Proof: We will prove the contrapositive, namely, that
if x <8and y< 8, then x +y # 16.

Pick x and y where x < 8 and y < 8. We want to show
that x + y # 16. To see this, note that

X+y<8+y
<8+ 8
=]0.

This means that x + y < 16, so x + y # 16, which is
what we needed to show. H

Why This Matters

* Propositional logic lets us symbolically
manipulate statements and theorems.

* This can help us better understand what a
theorem says or what a definition means.

 It’s also very usetul for proofs by
contradiction and contrapositive.

* Being able to negate statements
mechanically can reduce the likelihood of
taking an negation of contrapositive
wrong.

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

“(pAg—oTVS)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

“(pAg—>TVS)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

pANgN-—(rvs)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

pANgN—(rvs)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

—(r v s)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

—(rv s)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

—r A TS

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

pANgN-—-TA-S

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

-((pv(gAan)e(anbac-d))

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

-((pv(gAan)e(anbnac—d)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

(bv(gAar)e—=(anbnc-d

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

—(aANDbANc—-d)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

—~(aANDbANc—-d)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

(a NbACAN-—d)

Negation Practice

 Here’s a propositional formula that
contains some negations. Simplity it as
much as possible:

(bv(gAar)e(@nbAhncAhn —d)

Next Time

» First-Order Logic
 Reasoning about groups of objects.
 First-Order Translations

« Expressing yourself in symbolic math!

