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Logistics: Lecture Participation



  

Lecture Participation
● Starting Wednesday, we will be using the website PollEV 

to ask questions in lecture for attendance credit.
● If you answer these questions in lecture, you’ll get 

attendance credit for the day.
● You don’t need to have the right answers – you just need to 

respond to the questions.
● CGOE students: We automatically opt you out of 

participation, since we assume you aren’t physically here.
● If you’d prefer not to attend lectures, that’s okay! You can 

opt to count your final exam in place of participation.
● We’ll send out a form where you can opt-out of participation in 

Week 4.
Do not miss this deadline!



  

Lecture Participation
● We’ll dry-run PollEV questions today.
● Let’s start with the following warm-up:

●

● Here are a few music recs of our own:
● Jami Sieber - Timeless.
● Aaron Parks - Little Big and Little Big II.
● Arthur Moon - NPR Music Tiny Desk Concert.
● Shakey Graves – Roll the Bones (check out Audiotree Live version).

Make a music recommendation!
Answer at

https://cs103.stanford.edu/pollev

Click “Register”
and enter your

Stanford e-mail to
get to the SUNet

login page.

Also:

pollev.com/cs103aut25

https://cs103.stanford.edu/pollev


  

Propositional Logic



  

Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



  

Where We're Going
● Propositional Logic (Today)

● Reasoning about Boolean values.
● First-Order Logic (Wednesday/Friday)

● Reasoning about properties of multiple 
objects.



  

Outline for Today
● Propositional Variables

● Booleans, math edition!
● Propositional Connectives

● Linking things together.
● Truth Tables

● Rigorously defining connectives.
● Simplifying Negations

● Mechanically computing negations.



  

Propositional Logic



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional 
variables. Each propositional 

variable stands for a 
proposition, something that is 

either true or false.



  

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional 
connectives, which link 
propositions into larger 

propositions



  

Propositional Variables
● In propositional logic, individual 

propositions are represented by 
propositional variables.

● Each variable can take one one of two 
values: true or false. You can think of 
them as bool values.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical 

negation.



  

Truth Tables
● A truth table is a table showing the 

truth value of a propositional logic 
formula as a function of its inputs.

● Let’s examine the truth tables for the 
connectives we’re exploring today!



  

“I don’t love cupcakes.”



  

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.



  

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.



  

Propositional Variables
● In propositional logic, individual propositions 

are represented by propositional variables.
● Each variable can take one one of two values: 

true or false. You can think of them as bool 
values.

● In a move that contravenes programming style 
conventions, propositional variables are usually 
represented as lower-case letters, such as p, q, 
r, s, etc.
● That said, there’s nothing stopping you from using 

multiletter names!



  

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.



  

¬LoveCupcakes

“I don’t love cupcakes.”

c : I love cupcakes.



  

¬c

“I don’t love cupcakes.”

c : I love cupcakes.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical 

conjunction.



  

“It’s cardinal and white.”



  

“It’s cardinal and white.”

IsCardinal : It’s cardinal.



  

“It’s cardinal and white.”

IsCardinal : It’s cardinal.
IsWhite : It’s white.



  

IsCardinal ∧ IsWhite

“It’s cardinal and white.”

IsCardinal : It’s cardinal.
IsWhite : It’s white.



  

“It’s cardinal and white.”

p : It’s cardinal.
q : It’s white.

IsCardinal ∧ IsWhite



  

p ∧ q

“It’s cardinal and white.”

p : It’s cardinal.
q : It’s white.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical 

disjunction. This is an inclusive or.



  

“You must take Math 51 or CME 100.”



  

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.



  

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.



  

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.



  

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

These are propositional 
variables. Each propositional 

variable stands for a 
proposition, something that is 

either true or false.



  

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

This is a propositional 
connective, which links 
propositions into larger 

propositions



  

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.



  

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

TakeMath51 ∨ TakeCME100



  

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

p ∨ q



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● There’s also the “truth” connective:

⊤
● You’d read this out loud as “true.”
● Although this is technically considered a  a 

connective, it “connects” zero things and 
behaves like a variable that’s always true.



  

Propositional Connectives
● There are seven propositional connectives, five 

of which will be familiar from programming.
● Finally, there’s the “false” connective.

⊥
● You’d read this out loud as “false.”
● Like ⊤, this is technically a connective, but 

acts like a variable that’s always false.



  

Inclusive and Exclusive OR
● The ∨ connective is an inclusive “or.” It's true if at 

least one of the operands is true.
● It’s similar to the || operator in C, C++, Java, etc. and 

the or operator in Python.
● Sometimes we need an exclusive “or,” which isn’t 

true if both inputs are true.
● We can build this out of what we already have.

Write a propositional logic
formula for the exclusive OR

of p and q.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

de Morgan’s Laws

¬(p ∧ q) ¬p ∨ ¬q

¬(p ∨ q) ¬p ∧ ¬q

is equivalent to

is equivalent to



  

de Morgan’s Laws in Code
● Pro tip: Don't write this:
            if (!(p() && q())) {

                /* … */

            }

● Write this instead:
            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly: if p() 
returns false, q() is never evaluated.)



  

Mathematical Implication



  

Implication
● We can represent implications using this 

connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material 
conditional.

● Question: What should the truth table for 
p → q look like?



  

p q p → q

T T __

__F F
__F T
__T F

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

A Contract (from Friday):
  

If a flying pig bursts into the room and sings a pitch-perfect version 
of the national anthem, then Sean will throw cookies to the class.

The pig 
does the 

thing.

Sean throws 
qookies. Contract 

upheld?

p q p → q



  

A Contract (from Friday):
  

If a flying pig bursts into the room and sings a pitch-perfect version 
of the national anthem, then Sean will throw cookies to the class.

The pig 
does the 

thing.

Sean throws 
qookies. Contract 

upheld?

p q p → q

T T T



  

A Contract (from Friday):
  

If a flying pig bursts into the room and sings a pitch-perfect version 
of the national anthem, then Sean will throw cookies to the class.

The pig 
does the 

thing.

Sean throws 
qookies. Contract 

upheld?

p q p → q

T T T

TF F



  

A Contract (from Friday):
  

If a flying pig bursts into the room and sings a pitch-perfect version 
of the national anthem, then Sean will throw cookies to the class.

The pig 
does the 

thing.

Sean throws 
qookies. Contract 

upheld?

p q p → q

T T T

TF F
TF T



  

A Contract (from Friday):
  

If a flying pig bursts into the room and sings a pitch-perfect version 
of the national anthem, then Sean will throw cookies to the class.

The pig 
does the 

thing.

Sean throws 
qookies. Contract 

upheld?

p q p → q

T T T

TF F
TF T
FT F



  

p q p → q

T T T

TF F
TF T
FT F



  

p q p → q

T T T

TF F
TF T
FT F

An implication is false only 
when the antecedent is true 
and the consequent is false.

Every formula is either true 
or false, so these other 
entries have to be true.



  

p q p → q

T T T

TF F
TF T
FT F

Important observation: 
The statement p → q is true 
whenever p ∧ ¬q is false.



  

p q p → q

T T T

TF F
TF T
FT F

An implication with a 
true consequent is called 

trivially true.

An implication with a 
false antecedent is 

called vacuously true.



  

p q p → q

T T T

TF F
TF T
FT F

Please commit this table 
to memory. We’re going to 

need it, extensively, over 
the next couple of weeks.



  

“If at first you don’t succeed, try again.”



  

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.



  

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.



  

¬FirstSucceed → TryAgain

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.



  

¬FirstSucceed → TryAgain

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.



  

¬p → q

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.



  



  



  

JerseyMikes : It’s Jersey Mike’s.



  

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.



  

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.



  

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

JerseyMikes → FreshlySliced



  

An Important Equivalence
● The truth table for for p → q is chosen so 

that the following is true:
    p → q    is equivalent to    ¬(p ∧ ¬q)

● Later on, this equivalence will be 
incredibly useful:
¬(p → q)    is equivalent to    p ∧ ¬q      



  

Side Note: Contrapositive

T
F
T
T

p q p → q
F
F
T
T

F

F
T

T

¬p ¬q
T
T
F
F

T

T
F

F

We can use truth tables to demonstrate the 
equivalence of p → q and ¬q → ¬p.



  

Side Note: Contrapositive

T
F
T
T

p q p → q
F
F
T
T

F

F
T

T T
F
T
T

¬q → ¬p¬q ¬p
T
F
T
F

T

F
T

F

We can use truth tables to demonstrate the 
equivalence of p → q and ¬q → ¬p.

same :)



  

The Biconditional Connective



  

The Biconditional Connective
● In our previous lecture, we saw that the 

statement “p if and only if q” means both that 
p → q and q → p.

● We can write this in propositional logic using 
the biconditional connective:

p ↔ q
● This connective’s truth table has the same 

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look 

like?



  ___
___
___
___

p q p ↔ q
F
F
T
T

F

F
T

T

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Biconditionals
● The biconditional connective p ↔ q has 

the same truth table as (p → q) ∧ (q → p).
● Here’s what that looks like:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T



  

Biconditionals
● The biconditional connective p ↔ q has 

the same truth table as (p → q) ∧ (q → p).
● Here’s what that looks like:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔ 
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

Negating a Biconditional
● How do we simplify

¬(p ↔ q)
using the tools we’ve seen so far?

● There are many options, but here are our 
two favorites:

p ↔ ¬q                ¬p ↔ q

Question to ponder: what is 
the truth table for these 
statements, and where have 

you seen it before?



  

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   
∧   
∨   
→   
↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence
● The main points to remember:

● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Please ask!



  

The Big Table
Connective Read Aloud As C++ Version Fancy Name

¬p

p ∧ q

p ∨ q

p → q

p ↔ q

“not”

“and”

“or”

“implies”

“if and only if”

!

&&

||

see PS2!

see PS2!

Negation

Conjunction

Disjunction

Implication

Biconditional

⊤

⊥

“true”

“false”

true

false

Truth

Falsity

Negation

p

¬p ∨ ¬q
p → ¬q

¬p ∧ ¬q

p ∧ ¬q

p ↔ ¬q
¬p ↔ q

⊥

⊤



  

Time-Out for Announcements!



  

     ✉️ Submitting Work     ✉️
● All assignments should be submitted through GradeScope.

● The programming portion of the assignment is submitted separately 
from the written component.

● The written component must be typed; handwritten solutions don’t 
scan well and get mangled in GradeScope.

● All assignments are due at 1:00PM. You have three “late days” 
you can use throughout the quarter. Each automagically extends 
assignment deadlines from Friday at 1:00PM to Saturday at 
1:00PM; at most one late day can be used per assignment.
● Very good idea: Leave at least two hours buffer time for your first 

assignment submission, just in case something goes wrong.
● Very bad idea: Wait until the last minute to submit.

● Your score on the problem sets is the square root of your raw 
score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This 
gives a huge boost even if you need to turn something in that 
isn’t done.



  

Office Hours
● Office hours have started (as of today)! Think of them as 

“drop-in help hours” where you can ask questions on 
problem sets, lecture topics, etc.
● Check the Guide to Office Hours on the course website for the 

schedule.
● TA office hours are held in person in the CoDa basement 

(“garden level”). Keith’s are in CoDa E114. Sean’s are in 
CoDa E112 (or possibly outside and upstairs from Bishop 
Auditorium).

● Once you arrive, sign up through the CS Office Hours Queue 
so that we can help people in the order they arrived:

https://queue.cs.stanford.edu/
● Office hours are much less crowded earlier in the week than 

later. Stop by on Monday and Tuesday!

https://queue.cs.stanford.edu/


  

Back to CS103!



  

Recap So Far
● A propositional variable is a variable that is 

either true or false.
● The propositional connectives are

● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Truth: ⊤
● Falsity: ⊥
● Implication: p → q
● Biconditional: p ↔ q



  

Why All This Matters



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 → x ≥ 8 ∨ y ≥ 8
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statement:
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x + y = 16 → x ≥ 8 ∨ y ≥ 8



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)
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statement:
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statement:
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Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16



  

Why All This Matters
● Suppose we want to prove the following 

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive, namely, that
if x < 8 and y < 8, then x + y ≠ 16.

 

Pick x and y where x < 8 and y < 8. We want to show
that x + y ≠ 16. To see this, note that

 

x + y < 8 + y
         < 8 + 8

= 16.
 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why This Matters
● Propositional logic lets us symbolically 

manipulate statements and theorems.
● This can help us better understand what a 

theorem says or what a definition means.
● It’s also very useful for proofs by 

contradiction and contrapositive.
● Being able to negate statements 

mechanically can reduce the likelihood of 
taking an negation of contrapositive 
wrong.



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

¬(p ∧ q → r ∨ s)
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● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

¬(p ∧ q → r ∨ s)



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

p ∧ q ∧ ¬(r ∨ s)



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
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p ∧ q ∧ ¬(r ∨ s)
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p ∧ q ∧ ¬(r ∨ s)



  

Negation Practice
● Here’s a propositional formula that 

contains some negations. Simplify it as 
much as possible:

p ∧ q ∧ ¬r ∧ ¬s



  

Negation Practice
● Here’s a propositional formula that 
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Next Time
● First-Order Logic

● Reasoning about groups of objects.
● First-Order Translations

● Expressing yourself in symbolic math!


