

CS103CS103
Fall 2025Fall 2025

Lecture 03:
Propositional Logic

Logistics: Lecture Participation

Lecture Participation
● Starting Wednesday, we will be using the website PollEV

to ask questions in lecture for attendance credit.
● If you answer these questions in lecture, you’ll get

attendance credit for the day.
● You don’t need to have the right answers – you just need to

respond to the questions.
● CGOE students: We automatically opt you out of

participation, since we assume you aren’t physically here.
● If you’d prefer not to attend lectures, that’s okay! You can

opt to count your final exam in place of participation.
● We’ll send out a form where you can opt-out of participation in

Week 4.
Do not miss this deadline!

Lecture Participation
● We’ll dry-run PollEV questions today.
● Let’s start with the following warm-up:

●

● Here are a few music recs of our own:
● Jami Sieber - Timeless.
● Aaron Parks - Little Big and Little Big II.
● Arthur Moon - NPR Music Tiny Desk Concert.
● Shakey Graves – Roll the Bones (check out Audiotree Live version).

Make a music recommendation!
Answer at

https://cs103.stanford.edu/pollev

Click “Register”
and enter your

Stanford e-mail to
get to the SUNet

login page.

Also:

pollev.com/cs103aut25

https://cs103.stanford.edu/pollev

Propositional Logic

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going
● Propositional Logic (Today)

● Reasoning about Boolean values.
● First-Order Logic (Wednesday/Friday)

● Reasoning about properties of multiple
objects.

Outline for Today
● Propositional Variables

● Booleans, math edition!
● Propositional Connectives

● Linking things together.
● Truth Tables

● Rigorously defining connectives.
● Simplifying Negations

● Mechanically computing negations.

Propositional Logic

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional
variables. Each propositional

variable stands for a
proposition, something that is

either true or false.

TakeMath51 ∨ TakeCME100

¬FirstSucceed → TryAgain

IsCardinal ∧ IsWhite

These are propositional
connectives, which link
propositions into larger

propositions

Propositional Variables
● In propositional logic, individual

propositions are represented by
propositional variables.

● Each variable can take one one of two
values: true or false. You can think of
them as bool values.

Propositional Connectives
● There are seven propositional connectives, five

of which will be familiar from programming.
● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical

negation.

Truth Tables
● A truth table is a table showing the

truth value of a propositional logic
formula as a function of its inputs.

● Let’s examine the truth tables for the
connectives we’re exploring today!

“I don’t love cupcakes.”

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

Propositional Variables
● In propositional logic, individual propositions

are represented by propositional variables.
● Each variable can take one one of two values:

true or false. You can think of them as bool
values.

● In a move that contravenes programming style
conventions, propositional variables are usually
represented as lower-case letters, such as p, q,
r, s, etc.
● That said, there’s nothing stopping you from using

multiletter names!

¬LoveCupcakes

“I don’t love cupcakes.”

LoveCupcakes : I love cupcakes.

¬LoveCupcakes

“I don’t love cupcakes.”

c : I love cupcakes.

¬c

“I don’t love cupcakes.”

c : I love cupcakes.

Propositional Connectives
● There are seven propositional connectives, five

of which will be familiar from programming.
● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical

conjunction.

“It’s cardinal and white.”

“It’s cardinal and white.”

IsCardinal : It’s cardinal.

“It’s cardinal and white.”

IsCardinal : It’s cardinal.
IsWhite : It’s white.

IsCardinal ∧ IsWhite

“It’s cardinal and white.”

IsCardinal : It’s cardinal.
IsWhite : It’s white.

“It’s cardinal and white.”

p : It’s cardinal.
q : It’s white.

IsCardinal ∧ IsWhite

p ∧ q

“It’s cardinal and white.”

p : It’s cardinal.
q : It’s white.

Propositional Connectives
● There are seven propositional connectives, five

of which will be familiar from programming.
● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical

disjunction. This is an inclusive or.

“You must take Math 51 or CME 100.”

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

These are propositional
variables. Each propositional

variable stands for a
proposition, something that is

either true or false.

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

This is a propositional
connective, which links
propositions into larger

propositions

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

TakeMath51 : You must take Math 51.
TakeCME100 : You must take CME 100.

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

TakeMath51 ∨ TakeCME100

“You must take Math 51 or CME 100.”

p : You must take Math 51.
q : You must take CME 100.

p ∨ q

Propositional Connectives
● There are seven propositional connectives, five

of which will be familiar from programming.
● There’s also the “truth” connective:

⊤
● You’d read this out loud as “true.”
● Although this is technically considered a a

connective, it “connects” zero things and
behaves like a variable that’s always true.

Propositional Connectives
● There are seven propositional connectives, five

of which will be familiar from programming.
● Finally, there’s the “false” connective.

⊥
● You’d read this out loud as “false.”
● Like ⊤, this is technically a connective, but

acts like a variable that’s always false.

Inclusive and Exclusive OR
● The ∨ connective is an inclusive “or.” It's true if at

least one of the operands is true.
● It’s similar to the || operator in C, C++, Java, etc. and

the or operator in Python.
● Sometimes we need an exclusive “or,” which isn’t

true if both inputs are true.
● We can build this out of what we already have.

Write a propositional logic
formula for the exclusive OR

of p and q.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

de Morgan’s Laws

¬(p ∧ q) ¬p ∨ ¬q

¬(p ∨ q) ¬p ∧ ¬q

is equivalent to

is equivalent to

de Morgan’s Laws in Code
● Pro tip: Don't write this:
 if (!(p() && q())) {

 /* … */

 }

● Write this instead:
 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly: if p()
returns false, q() is never evaluated.)

Mathematical Implication

Implication
● We can represent implications using this

connective:

p → q
● You’d read this out loud as “p implies q.”

● The fancy name for this is the material
conditional.

● Question: What should the truth table for
p → q look like?

p q p → q

T T __

__F F
__F T
__T F

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the

thing.

Sean throws
qookies. Contract

upheld?

p q p → q

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the

thing.

Sean throws
qookies. Contract

upheld?

p q p → q

T T T

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the

thing.

Sean throws
qookies. Contract

upheld?

p q p → q

T T T

TF F

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the

thing.

Sean throws
qookies. Contract

upheld?

p q p → q

T T T

TF F
TF T

A Contract (from Friday):

If a flying pig bursts into the room and sings a pitch-perfect version
of the national anthem, then Sean will throw cookies to the class.

The pig
does the

thing.

Sean throws
qookies. Contract

upheld?

p q p → q

T T T

TF F
TF T
FT F

p q p → q

T T T

TF F
TF T
FT F

p q p → q

T T T

TF F
TF T
FT F

An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.

p q p → q

T T T

TF F
TF T
FT F

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

p q p → q

T T T

TF F
TF T
FT F

An implication with a
true consequent is called

trivially true.

An implication with a
false antecedent is

called vacuously true.

p q p → q

T T T

TF F
TF T
FT F

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

“If at first you don’t succeed, try again.”

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.

¬FirstSucceed → TryAgain

“If at first you don’t succeed, try again.”

FirstSucceed : You succeed at first.
TryAgain : You ought to try again.

¬FirstSucceed → TryAgain

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.

¬p → q

“If at first you don’t succeed, try again.”

p : You succeed at first.
q : You ought to try again.

JerseyMikes : It’s Jersey Mike’s.

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

¬FreshlySliced → ¬JerseyMikes

JerseyMikes : It’s Jersey Mike’s.
FreshlySliced : It’s freshly sliced.

JerseyMikes → FreshlySliced

An Important Equivalence
● The truth table for for p → q is chosen so

that the following is true:
 p → q is equivalent to ¬(p ∧ ¬q)

● Later on, this equivalence will be
incredibly useful:
¬(p → q) is equivalent to p ∧ ¬q

Side Note: Contrapositive

T
F
T
T

p q p → q
F
F
T
T

F

F
T

T

¬p ¬q
T
T
F
F

T

T
F

F

We can use truth tables to demonstrate the
equivalence of p → q and ¬q → ¬p.

Side Note: Contrapositive

T
F
T
T

p q p → q
F
F
T
T

F

F
T

T T
F
T
T

¬q → ¬p¬q ¬p
T
F
T
F

T

F
T

F

We can use truth tables to demonstrate the
equivalence of p → q and ¬q → ¬p.

same :)

The Biconditional Connective

The Biconditional Connective
● In our previous lecture, we saw that the

statement “p if and only if q” means both that
p → q and q → p.

● We can write this in propositional logic using
the biconditional connective:

p ↔ q
● This connective’s truth table has the same

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look

like?

p q p ↔ q
F
F
T
T

F

F
T

T

How should we fill in
these blanks?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Biconditionals
● The biconditional connective p ↔ q has

the same truth table as (p → q) ∧ (q → p).
● Here’s what that looks like:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

Biconditionals
● The biconditional connective p ↔ q has

the same truth table as (p → q) ∧ (q → p).
● Here’s what that looks like:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

Negating a Biconditional
● How do we simplify

¬(p ↔ q)
using the tools we’ve seen so far?

● There are many options, but here are our
two favorites:

p ↔ ¬q ¬p ↔ q

Question to ponder: what is
the truth table for these
statements, and where have

you seen it before?

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● The main points to remember:

● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Please ask!

The Big Table
Connective Read Aloud As C++ Version Fancy Name

¬p

p ∧ q

p ∨ q

p → q

p ↔ q

“not”

“and”

“or”

“implies”

“if and only if”

!

&&

||

see PS2!

see PS2!

Negation

Conjunction

Disjunction

Implication

Biconditional

⊤

⊥

“true”

“false”

true

false

Truth

Falsity

Negation

p

¬p ∨ ¬q
p → ¬q

¬p ∧ ¬q

p ∧ ¬q

p ↔ ¬q
¬p ↔ q

⊥

⊤

Time-Out for Announcements!

 ✉️ Submitting Work ✉️
● All assignments should be submitted through GradeScope.

● The programming portion of the assignment is submitted separately
from the written component.

● The written component must be typed; handwritten solutions don’t
scan well and get mangled in GradeScope.

● All assignments are due at 1:00PM. You have three “late days”
you can use throughout the quarter. Each automagically extends
assignment deadlines from Friday at 1:00PM to Saturday at
1:00PM; at most one late day can be used per assignment.
● Very good idea: Leave at least two hours buffer time for your first

assignment submission, just in case something goes wrong.
● Very bad idea: Wait until the last minute to submit.

● Your score on the problem sets is the square root of your raw
score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This
gives a huge boost even if you need to turn something in that
isn’t done.

Office Hours
● Office hours have started (as of today)! Think of them as

“drop-in help hours” where you can ask questions on
problem sets, lecture topics, etc.
● Check the Guide to Office Hours on the course website for the

schedule.
● TA office hours are held in person in the CoDa basement

(“garden level”). Keith’s are in CoDa E114. Sean’s are in
CoDa E112 (or possibly outside and upstairs from Bishop
Auditorium).

● Once you arrive, sign up through the CS Office Hours Queue
so that we can help people in the order they arrived:

https://queue.cs.stanford.edu/
● Office hours are much less crowded earlier in the week than

later. Stop by on Monday and Tuesday!

https://queue.cs.stanford.edu/

Back to CS103!

Recap So Far
● A propositional variable is a variable that is

either true or false.
● The propositional connectives are

● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Truth: ⊤
● Falsity: ⊥
● Implication: p → q
● Biconditional: p ↔ q

Why All This Matters

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive, namely, that
if x < 8 and y < 8, then x + y ≠ 16.

Pick x and y where x < 8 and y < 8. We want to show
that x + y ≠ 16. To see this, note that

x + y < 8 + y
 < 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why This Matters
● Propositional logic lets us symbolically

manipulate statements and theorems.
● This can help us better understand what a

theorem says or what a definition means.
● It’s also very useful for proofs by

contradiction and contrapositive.
● Being able to negate statements

mechanically can reduce the likelihood of
taking an negation of contrapositive
wrong.

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

¬(p ∧ q → r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

¬(p ∧ q → r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬(r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬(r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬(r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬(r ∨ s)

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬r ∧ ¬s

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

p ∧ q ∧ ¬r ∧ ¬s

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

¬((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c → d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

¬((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c → d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

((p ∨ (q ∧ r)) ↔ ¬(a ∧ b ∧ c → d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

((p ∨ (q ∧ r)) ↔ ¬(a ∧ b ∧ c → d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

((p ∨ (q ∧ r)) ↔ ¬(a ∧ b ∧ c → d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c ∧ ¬d))

Negation Practice
● Here’s a propositional formula that

contains some negations. Simplify it as
much as possible:

((p ∨ (q ∧ r)) ↔ (a ∧ b ∧ c ∧ ¬d))

Next Time
● First-Order Logic

● Reasoning about groups of objects.
● First-Order Translations

● Expressing yourself in symbolic math!

